Proof of C4 photosynthesis without Kranz anatomy in Bienertia cycloptera (Chenopodiaceae).

نویسندگان

  • Elena V Voznesenskaya
  • Vincent R Franceschi
  • Olavi Kiirats
  • Elena G Artyusheva
  • Helmut Freitag
  • Gerald E Edwards
چکیده

Kranz anatomy, with its separation of elements of the C4 pathway between two cells, has been an accepted criterion for function of C4 photosynthesis in terrestrial plants. However, Bienertia cycloptera (Chenopodiaceae), which grows in salty depressions of Central Asian semi-deserts, has unusual chlorenchyma, lacks Kranz anatomy, but has photosynthetic features of C4 plants. Its photosynthetic response to varying CO2 and O2 is typical of C4 plants having Kranz anatomy. Lack of night-time CO2 fixation indicates it is not acquiring carbon by Crassulacean acid metabolism. This species exhibits an independent, novel solution to function of the C4 mechanism through spatial compartmentation of dimorphic chloroplasts, other organelles and photosynthetic enzymes in distinct positions within a single chlorenchyma cell. The chlorenchyma cells have a large, spherical central cytoplasmic compartment interconnected by cytoplasmic channels through the vacuole to the peripheral cytoplasm. This compartment is filled with mitochondria and granal chloroplasts, while the peripheral cytoplasm apparently lacks mitochondria and has grana-deficient chloroplasts. Immunolocalization studies show enzymes compartmentalized selectively in the CC compartment, including Rubisco in chloroplasts, and NAD-malic enzyme and glycine decarboxylase in mitochondria, whereas pyruvate, Pi dikinase of the C4 cycle is localized selectively in peripheral chloroplasts. Phosphoenolpyruvate carboxylase, a cytosolic C4 cycle enzyme, is enriched in the peripheral cytoplasm. Our results show Bienertia utilizes strict compartmentation of organelles and enzymes within a single cell to effectively mimic the spatial separation of Kranz anatomy, allowing it to function as a C4 plant having suppressed photorespiration; this raises interesting questions about evolution of C4 mechanisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The cytoskeleton maintains organelle partitioning required for single-cell C4 photosynthesis in Chenopodiaceae species.

Recently, three Chenopodiaceae species, Bienertia cycloptera, Bienertia sinuspersici, and Suaeda aralocaspica, were shown to possess novel C(4) photosynthesis mechanisms through the compartmentalization of organelles and photosynthetic enzymes into two distinct regions within a single chlorenchyma cell. Bienertia has peripheral and central compartments, whereas S. aralocaspica has distal and pr...

متن کامل

C(4) photosynthesis in terrestrial plants does not require Kranz anatomy.

C(4) photosynthesis in terrestrial plants was thought to require Kranz anatomy because the cell wall between mesophyll and bundle sheath cells restricts leakage of CO(2). Recent work with the central Asian chenopods Borszczowia aralocaspica and Bienertia cycloptera show that C(4) photosynthesis functions efficiently in individual cells containing both the C(4) and C(3) cycles. These discoveries...

متن کامل

Positive selection of Kranz and non-Kranz C4 phosphoenolpyruvate carboxylase amino acids in Suaedoideae (Chenopodiaceae)

In subfamily Suaedoideae, four independent gains of C4 photosynthesis are proposed, which includes two parallel origins of Kranz anatomy (sections Salsina and Schoberia) and two independent origins of single-cell C4 anatomy (Bienertia and Suaeda aralocaspica). Additional phylogenetic support for this hypothesis was generated from sequence data of the C-terminal portion of the phosphoenolpyruvat...

متن کامل

Structural and physiological analyses in Salsoleae (Chenopodiaceae) indicate multiple transitions among C3, intermediate, and C4 photosynthesis

In subfamily Salsoloideae (family Chenopodiaceae) most species are C4 plants having terete leaves with Salsoloid Kranz anatomy characterized by a continuous dual chlorenchyma layer of Kranz cells (KCs) and mesophyll (M) cells, surrounding water storage and vascular tissue. From section Coccosalsola sensu Botschantzev, leaf structural and photosynthetic features were analysed on selected species...

متن کامل

The unique structural and biochemical development of single cell C4 photosynthesis along longitudinal leaf gradients in Bienertia sinuspersici and Suaeda aralocaspica (Chenopodiaceae)

Temporal and spatial patterns of photosynthetic enzyme expression and structural maturation of chlorenchyma cells along longitudinal developmental gradients were characterized in young leaves of two single cell C4 species, Bienertia sinuspersici and Suaeda aralocaspica Both species partition photosynthetic functions between distinct intracellular domains. In the C4-C domain, C4 acids are formed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant journal : for cell and molecular biology

دوره 31 5  شماره 

صفحات  -

تاریخ انتشار 2002